Cloud Deployment and Scaling for Economic Data Systems: Production Architecture Guide

Introduction

Deploying economic data systems in cloud environments presents unique challenges that differ significantly from traditional business applications. Economic data processing requires handling massive historical datasets spanning decades, supporting both batch processing for comprehensive analysis and real-time processing for immediate insights, while maintaining strict data quality and security standards.

The temporal nature of economic data creates specific scaling requirements that cloud architectures must address. Economic indicators often arrive in predictable bursts during market hours or government release schedules, creating demand patterns that require sophisticated auto-scaling strategies. Additionally, economic research often involves intensive computational workloads for backtesting, forecasting, and statistical analysis that can benefit from elastic cloud resources.

Cloud deployment strategies for economic systems must also account for regulatory compliance requirements, data sovereignty concerns, and the need for high availability during critical economic events. Financial institutions and government agencies often have strict requirements about data location, encryption, and access controls that influence cloud architecture decisions.

This guide builds upon the foundational concepts from our Data Lake Architecture Economic Analytics and Real-Time Data Processing Economic Indicators guides, extending them to production cloud deployments that can scale to meet enterprise requirements.

Multi-Cloud Architecture Patterns

Modern economic data systems increasingly adopt multi-cloud strategies to avoid vendor lock-in, optimize costs, and ensure high availability across geographic regions. The architecture must handle data synchronization, failover scenarios, and consistent deployment across different cloud providers while maintaining performance and security standards.

Economic data systems particularly benefit from multi-cloud approaches because different providers excel in different areas. One cloud provider might offer superior machine learning capabilities for economic forecasting, while another provides better cost-effectiveness for large-scale data storage. The challenge lies in orchestrating these services seamlessly while maintaining data consistency and operational simplicity.

The multi-cloud architecture must also address data gravity concerns, where large economic datasets become expensive to move between clouds. Strategic placement of data and compute resources requires careful analysis of access patterns, processing requirements, and cost implications. The architecture should minimize data movement while ensuring that analytical workloads can access the data they need efficiently.

from abc import ABC, abstractmethod
from typing import Dict, List, Any, Optional
from dataclasses import dataclass
from enum import Enum
import boto3
import azure.identity
import azure.storage.blob
from google.cloud import storage as gcs
import logging
import asyncio
from datetime import datetime, timedelta

class CloudProvider(Enum):
    AWS = "aws"
    AZURE = "azure"
    GCP = "gcp"

@dataclass
class CloudResourceConfig:
    provider: CloudProvider
    region: str
    resource_type: str
    configuration: Dict[str, Any]
    tags: Dict[str, str]
    cost_allocation: str

class MultiCloudOrchestrator:
    """Orchestrates economic data processing across multiple cloud providers"""
    
    def __init__(self):
        self.cloud_clients = {}
        self.resource_registry = {}
        self.data_placement_strategy = DataPlacementStrategy()
        self.cost_optimizer = CloudCostOptimizer()
        self.failover_manager = FailoverManager()
        
    def initialize_cloud_connections(self, credentials: Dict[CloudProvider, Dict]):
        """Initialize connections to all cloud providers"""
        for provider, creds in credentials.items():
            if provider == CloudProvider.AWS:
                self.cloud_clients[provider] = AWSCloudManager(creds)
            elif provider == CloudProvider.AZURE:
                self.cloud_clients[provider] = AzureCloudManager(creds)
            elif provider == CloudProvider.GCP:
                self.cloud_clients[provider] = GCPCloudManager(creds)
    
    async def deploy_economic_system(self, deployment_config: Dict[str, Any]) -> Dict[str, Any]:
        """Deploy economic data system across multiple clouds"""
        deployment_plan = self._create_deployment_plan(deployment_config)
        
        deployment_results = {}
        
        for provider, resources in deployment_plan.items():
            try:
                cloud_manager = self.cloud_clients[provider]
                provider_results = await cloud_manager.deploy_resources(resources)
                deployment_results[provider.value] = provider_results
                
                # Register deployed resources
                self._register_resources(provider, provider_results)
                
            except Exception as e:
                logging.error(f"Deployment failed for {provider}: {e}")
                # Implement rollback strategy
                await self._rollback_deployment(provider, deployment_results)
                raise
        
        # Configure cross-cloud networking and data replication
        await self._setup_cross_cloud_connectivity(deployment_results)
        
        return deployment_results
    
    def _create_deployment_plan(self, config: Dict[str, Any]) -> Dict[CloudProvider, List[CloudResourceConfig]]:
        """Create optimized deployment plan across clouds"""
        plan = {provider: [] for provider in CloudProvider}
        
        # Data storage placement strategy
        storage_placement = self.data_placement_strategy.optimize_data_placement(
            config['data_requirements']
        )
        
        for placement in storage_placement:
            plan[placement.provider].append(CloudResourceConfig(
                provider=placement.provider,
                region=placement.region,
                resource_type='storage',
                configuration=placement.storage_config,
                tags={'purpose': 'economic_data', 'tier': placement.tier},
                cost_allocation=placement.cost_center
            ))
        
        # Compute resource placement
        compute_placement = self._optimize_compute_placement(config['compute_requirements'])
        
        for provider, compute_configs in compute_placement.items():
            plan[provider].extend(compute_configs)
        
        # Load balancer and networking setup
        networking_configs = self._plan_networking_resources(config['networking_requirements'])
        
        for provider, net_configs in networking_configs.items():
            plan[provider].extend(net_configs)
        
        return plan
    
    def _optimize_compute_placement(self, requirements: Dict[str, Any]) -> Dict[CloudProvider, List[CloudResourceConfig]]:
        """Optimize compute resource placement across clouds"""
        compute_plan = {provider: [] for provider in CloudProvider}
        
        # Real-time processing typically benefits from edge locations
        for real_time_requirement in requirements.get('real_time', []):
            optimal_provider = self._select_provider_for_latency(real_time_requirement['region'])
            
            compute_plan[optimal_provider].append(CloudResourceConfig(
                provider=optimal_provider,
                region=real_time_requirement['region'],
                resource_type='container_service',
                configuration={
                    'cpu_cores': real_time_requirement['cpu_cores'],
                    'memory_gb': real_time_requirement['memory_gb'],
                    'auto_scaling': {
                        'min_instances': real_time_requirement['min_instances'],
                        'max_instances': real_time_requirement['max_instances'],
                        'scale_metric': 'cpu_utilization',
                        'scale_threshold': 70
                    }
                },
                tags={'workload_type': 'real_time', 'priority': 'high'},
                cost_allocation='operations'
            ))
        
        # Batch processing can use spot instances for cost optimization
        for batch_requirement in requirements.get('batch', []):
            cost_optimal_provider = self._select_provider_for_cost(batch_requirement)
            
            compute_plan[cost_optimal_provider].append(CloudResourceConfig(
                provider=cost_optimal_provider,
                region=batch_requirement['region'],
                resource_type='batch_compute',
                configuration={
                    'instance_type': 'spot',
                    'cpu_cores': batch_requirement['cpu_cores'],
                    'memory_gb': batch_requirement['memory_gb'],
                    'max_spot_price': batch_requirement.get('max_hourly_cost', 0.50),
                    'job_queue_config': {
                        'priority': batch_requirement.get('priority', 100),
                        'timeout_minutes': batch_requirement.get('timeout', 360)
                    }
                },
                tags={'workload_type': 'batch', 'cost_optimized': 'true'},
                cost_allocation='analytics'
            ))
        
        return compute_plan
    
    def _select_provider_for_latency(self, region: str) -> CloudProvider:
        """Select optimal cloud provider for latency requirements"""
        # This would implement latency testing and provider selection logic
        # For demonstration, use simple regional mapping
        region_mappings = {
            'us-east': CloudProvider.AWS,
            'us-west': CloudProvider.GCP,
            'europe': CloudProvider.AZURE,
            'asia': CloudProvider.GCP
        }
        return region_mappings.get(region, CloudProvider.AWS)
    
    def _select_provider_for_cost(self, requirement: Dict[str, Any]) -> CloudProvider:
        """Select optimal cloud provider for cost requirements"""
        # This would implement cost comparison logic
        return self.cost_optimizer.find_cheapest_provider(requirement)
    
    async def _setup_cross_cloud_connectivity(self, deployment_results: Dict[str, Any]):
        """Setup networking and data replication across clouds"""
        # Configure VPN connections between clouds
        for provider1 in deployment_results:
            for provider2 in deployment_results:
                if provider1 != provider2:
                    await self._create_inter_cloud_connection(provider1, provider2)
        
        # Setup data replication
        await self._configure_data_replication(deployment_results)
    
    async def _create_inter_cloud_connection(self, provider1: str, provider2: str):
        """Create secure connection between cloud providers"""
        logging.info(f"Creating inter-cloud connection: {provider1} <-> {provider2}")
        
        # Implementation would setup VPN or dedicated connections
        # This is a simplified representation
        connection_config = {
            'connection_type': 'vpn',
            'encryption': 'aes256',
            'bandwidth': '1Gbps',
            'redundancy': True
        }
        
        # Configure on both sides
        await self.cloud_clients[CloudProvider(provider1)].setup_vpn_connection(
            target_provider=provider2,
            config=connection_config
        )
        
        await self.cloud_clients[CloudProvider(provider2)].setup_vpn_connection(
            target_provider=provider1,
            config=connection_config
        )

class DataPlacementStrategy:
    """Optimizes data placement across multiple clouds"""
    
    def __init__(self):
        self.placement_policies = self._load_placement_policies()
    
    def _load_placement_policies(self) -> Dict[str, Any]:
        """Load data placement policies"""
        return {
            'hot_data': {
                'replication_factor': 2,
                'preferred_providers': [CloudProvider.AWS, CloudProvider.AZURE],
                'access_tier': 'hot',
                'encryption': 'required'
            },
            'warm_data': {
                'replication_factor': 1,
                'preferred_providers': [CloudProvider.GCP],
                'access_tier': 'warm',
                'encryption': 'required'
            },
            'cold_data': {
                'replication_factor': 1,
                'preferred_providers': [CloudProvider.AWS],  # Glacier for long-term storage
                'access_tier': 'cold',
                'encryption': 'required'
            }
        }
    
    def optimize_data_placement(self, data_requirements: Dict[str, Any]) -> List:
        """Optimize data placement across clouds"""
        placements = []
        
        for data_type, requirements in data_requirements.items():
            access_pattern = requirements.get('access_pattern', 'warm')
            size_gb = requirements.get('size_gb', 0)
            compliance_requirements = requirements.get('compliance', [])
            
            policy = self.placement_policies.get(access_pattern, self.placement_policies['warm_data'])
            
            # Select providers based on compliance and cost
            eligible_providers = self._filter_providers_by_compliance(
                policy['preferred_providers'],
                compliance_requirements
            )
            
            for i in range(policy['replication_factor']):
                selected_provider = eligible_providers[i % len(eligible_providers)]
                
                placement = DataPlacement(
                    provider=selected_provider,
                    region=self._select_optimal_region(selected_provider, requirements),
                    tier=policy['access_tier'],
                    storage_config={
                        'encryption': policy['encryption'],
                        'redundancy': 'geo_redundant' if policy['replication_factor'] > 1 else 'local_redundant',
                        'size_gb': size_gb,
                        'data_type': data_type
                    },
                    cost_center=requirements.get('cost_center', 'default')
                )
                
                placements.append(placement)
        
        return placements
    
    def _filter_providers_by_compliance(self, providers: List[CloudProvider], 
                                      compliance_requirements: List[str]) -> List[CloudProvider]:
        """Filter providers based on compliance requirements"""
        if 'gdpr' in compliance_requirements:
            # GDPR requires EU data residency
            return [p for p in providers if p != CloudProvider.GCP]  # Simplified logic
        
        if 'hipaa' in compliance_requirements:
            # HIPAA compliance available on all major providers
            return providers
        
        return providers
    
    def _select_optimal_region(self, provider: CloudProvider, requirements: Dict[str, Any]) -> str:
        """Select optimal region for the provider"""
        regional_preferences = requirements.get('regional_preferences', ['us-east-1'])
        
        provider_regions = {
            CloudProvider.AWS: ['us-east-1', 'us-west-2', 'eu-west-1', 'ap-southeast-1'],
            CloudProvider.AZURE: ['eastus', 'westus2', 'westeurope', 'southeastasia'],
            CloudProvider.GCP: ['us-central1', 'us-west1', 'europe-west1', 'asia-southeast1']
        }
        
        available_regions = provider_regions.get(provider, ['us-east-1'])
        
        # Find intersection of preferred and available regions
        for preferred in regional_preferences:
            for available in available_regions:
                if preferred in available:
                    return available
        
        # Return first available region if no preference match
        return available_regions[0]

@dataclass
class DataPlacement:
    provider: CloudProvider
    region: str
    tier: str
    storage_config: Dict[str, Any]
    cost_center: str

class CloudCostOptimizer:
    """Optimizes costs across multiple cloud providers"""
    
    def __init__(self):
        self.pricing_cache = {}
        self.cost_models = self._initialize_cost_models()
    
    def _initialize_cost_models(self) -> Dict[CloudProvider, Dict]:
        """Initialize cost models for each provider"""
        return {
            CloudProvider.AWS: {
                'compute': {
                    'on_demand_multiplier': 1.0,
                    'spot_discount': 0.7,
                    'reserved_discount': 0.6
                },
                'storage': {
                    's3_standard': 0.023,  # per GB/month
                    's3_ia': 0.0125,
                    's3_glacier': 0.004
                },
                'data_transfer': {
                    'inter_region': 0.02,  # per GB
                    'internet_outbound': 0.09
                }
            },
            CloudProvider.AZURE: {
                'compute': {
                    'on_demand_multiplier': 0.95,
                    'spot_discount': 0.6,
                    'reserved_discount': 0.65
                },
                'storage': {
                    'blob_hot': 0.021,
                    'blob_cool': 0.015,
                    'blob_archive': 0.002
                },
                'data_transfer': {
                    'inter_region': 0.025,
                    'internet_outbound': 0.087
                }
            },
            CloudProvider.GCP: {
                'compute': {
                    'on_demand_multiplier': 0.90,
                    'preemptible_discount': 0.8,
                    'committed_discount': 0.7
                },
                'storage': {
                    'standard': 0.020,
                    'nearline': 0.010,
                    'coldline': 0.004
                },
                'data_transfer': {
                    'inter_region': 0.01,
                    'internet_outbound': 0.085
                }
            }
        }
    
    def find_cheapest_provider(self, requirement: Dict[str, Any]) -> CloudProvider:
        """Find the most cost-effective provider for a requirement"""
        costs = {}
        
        for provider in CloudProvider:
            cost = self._calculate_cost(provider, requirement)
            costs[provider] = cost
        
        return min(costs.keys(), key=lambda p: costs[p])
    
    def _calculate_cost(self, provider: CloudProvider, requirement: Dict[str, Any]) -> float:
        """Calculate estimated monthly cost for a requirement"""
        cost_model = self.cost_models[provider]
        total_cost = 0
        
        # Compute cost
        if 'cpu_cores' in requirement:
            compute_hours = requirement.get('hours_per_month', 730)  # Full month
            instance_cost_per_hour = self._estimate_instance_cost(provider, requirement)
            total_cost += compute_hours * instance_cost_per_hour
        
        # Storage cost
        if 'storage_gb' in requirement:
            storage_tier = requirement.get('storage_tier', 'standard')
            storage_cost_per_gb = self._get_storage_cost(provider, storage_tier)
            total_cost += requirement['storage_gb'] * storage_cost_per_gb
        
        # Data transfer cost
        if 'data_transfer_gb' in requirement:
            transfer_cost = self._calculate_transfer_cost(provider, requirement)
            total_cost += transfer_cost
        
        return total_cost
    
    def _estimate_instance_cost(self, provider: CloudProvider, requirement: Dict[str, Any]) -> float:
        """Estimate hourly instance cost"""
        # Simplified cost estimation based on CPU cores and memory
        cpu_cores = requirement.get('cpu_cores', 2)
        memory_gb = requirement.get('memory_gb', 4)
        
        # Base cost per core-hour (varies by provider)
        base_costs = {
            CloudProvider.AWS: 0.05,
            CloudProvider.AZURE: 0.048,
            CloudProvider.GCP: 0.045
        }
        
        base_cost = base_costs[provider]
        instance_cost = (cpu_cores * base_cost) + (memory_gb * 0.01)
        
        # Apply discounts for spot/preemptible instances
        if requirement.get('use_spot', False):
            cost_model = self.cost_models[provider]['compute']
            if provider == CloudProvider.GCP:
                instance_cost *= cost_model['preemptible_discount']
            else:
                instance_cost *= cost_model['spot_discount']
        
        return instance_cost
    
    def _get_storage_cost(self, provider: CloudProvider, tier: str) -> float:
        """Get storage cost per GB per month"""
        storage_costs = self.cost_models[provider]['storage']
        
        tier_mapping = {
            CloudProvider.AWS: {
                'hot': 's3_standard',
                'warm': 's3_ia',
                'cold': 's3_glacier'
            },
            CloudProvider.AZURE: {
                'hot': 'blob_hot',
                'warm': 'blob_cool',
                'cold': 'blob_archive'
            },
            CloudProvider.GCP: {
                'hot': 'standard',
                'warm': 'nearline',
                'cold': 'coldline'
            }
        }
        
        provider_tier = tier_mapping.get(provider, {}).get(tier, 'hot')
        return storage_costs.get(provider_tier, storage_costs[list(storage_costs.keys())[0]])
    
    def _calculate_transfer_cost(self, provider: CloudProvider, requirement: Dict[str, Any]) -> float:
        """Calculate data transfer costs"""
        transfer_gb = requirement.get('data_transfer_gb', 0)
        transfer_type = requirement.get('transfer_type', 'internet_outbound')
        
        transfer_costs = self.cost_models[provider]['data_transfer']
        cost_per_gb = transfer_costs.get(transfer_type, transfer_costs['internet_outbound'])
        
        return transfer_gb * cost_per_gb

Auto-Scaling Strategies

Economic data systems require sophisticated auto-scaling strategies that account for predictable demand patterns, unexpected market events, and the computational intensity of economic analysis workloads. Unlike typical web applications that scale based on user traffic, economic systems must scale based on data arrival patterns, analysis complexity, and time-sensitive processing requirements.

The scaling strategy must differentiate between different types of workloads within the economic data system. Real-time market data processing requires immediate scaling with minimal latency, while batch analytical jobs can tolerate longer scaling times but may need significant computational resources. Historical data analysis might require scaling based on dataset size rather than incoming data rate.

Predictive scaling becomes particularly valuable for economic systems due to the scheduled nature of many economic data releases. The system can pre-scale before known events like employment reports, GDP announcements, or central bank meetings. This predictive approach ensures adequate capacity is available when critical economic data arrives, avoiding the latency associated with reactive scaling.

from typing import Dict, List, Any, Optional, Callable
from dataclasses import dataclass
from datetime import datetime, timedelta
from enum import Enum
import asyncio
import logging
from abc import ABC, abstractmethod

class ScalingTrigger(Enum):
    CPU_UTILIZATION = "cpu_utilization"
    MEMORY_UTILIZATION = "memory_utilization"
    QUEUE_LENGTH = "queue_length"
    DATA_INGESTION_RATE = "data_ingestion_rate"
    CUSTOM_METRIC = "custom_metric"
    SCHEDULED_EVENT = "scheduled_event"

@dataclass
class ScalingPolicy:
    name: str
    trigger: ScalingTrigger
    threshold_up: float
    threshold_down: float
    scale_up_adjustment: int
    scale_down_adjustment: int
    cooldown_minutes: int
    min_instances: int
    max_instances: int
    enabled: bool = True

@dataclass
class EconomicEvent:
    name: str
    scheduled_time: datetime
    expected_data_volume: int
    processing_complexity: str  # 'low', 'medium', 'high'
    pre_scale_minutes: int
    post_scale_minutes: int

class EconomicAutoScaler:
    """Auto-scaling system optimized for economic data workloads"""
    
    def __init__(self):
        self.scaling_policies = []
        self.economic_calendar = EconomicCalendar()
        self.metrics_collector = MetricsCollector()
        self.resource_manager = CloudResourceManager()
        self.scaling_history = []
        self.active_scalings = {}
        
    def add_scaling_policy(self, policy: ScalingPolicy):
        """Add a scaling policy to the auto-scaler"""
        self.scaling_policies.append(policy)
        logging.info(f"Added scaling policy: {policy.name}")
    
    async def start_auto_scaling(self):
        """Start the auto-scaling monitoring loop"""
        logging.info("Starting economic auto-scaler")
        
        # Start monitoring tasks
        monitoring_task = asyncio.create_task(self._monitoring_loop())
        predictive_task = asyncio.create_task(self._predictive_scaling_loop())
        cleanup_task = asyncio.create_task(self._cleanup_loop())
        
        await asyncio.gather(monitoring_task, predictive_task, cleanup_task)
    
    async def _monitoring_loop(self):
        """Main monitoring loop for reactive scaling"""
        while True:
            try:
                current_metrics = await self.metrics_collector.collect_metrics()
                
                for policy in self.scaling_policies:
                    if not policy.enabled:
                        continue
                    
                    await self._evaluate_scaling_policy(policy, current_metrics)
                
                await asyncio.sleep(30)  # Check every 30 seconds
                
            except Exception as e:
                logging.error(f"Error in monitoring loop: {e}")
                await asyncio.sleep(60)
    
    async def _predictive_scaling_loop(self):
        """Predictive scaling based on economic calendar"""
        while True:
            try:
                upcoming_events = self.economic_calendar.get_upcoming_events(
                    hours_ahead=24
                )
                
                for event in upcoming_events:
                    await self._handle_scheduled_event(event)
                
                await asyncio.sleep(300)  # Check every 5 minutes
                
            except Exception as e:
                logging.error(f"Error in predictive scaling: {e}")
                await asyncio.sleep(300)
    
    async def _evaluate_scaling_policy(self, policy: ScalingPolicy, 
                                     metrics: Dict[str, float]):
        """Evaluate a scaling policy against current metrics"""
        metric_value = metrics.get(policy.trigger.value, 0)
        
        # Check cooldown period
        last_scaling = self.scaling_history[-1] if self.scaling_history else None
        if last_scaling:
            time_since_last = (datetime.utcnow() - last_scaling['timestamp']).seconds / 60
            if time_since_last < policy.cooldown_minutes:
                return
        
        current_instances = await self.resource_manager.get_current_instance_count(
            policy.name
        )
        
        scale_action = None
        
        # Determine scaling action
        if metric_value > policy.threshold_up and current_instances < policy.max_instances:
            target_instances = min(
                current_instances + policy.scale_up_adjustment,
                policy.max_instances
            )
            scale_action = 'scale_up'
            
        elif metric_value < policy.threshold_down and current_instances > policy.min_instances:
            target_instances = max(
                current_instances - policy.scale_down_adjustment,
                policy.min_instances
            )
            scale_action = 'scale_down'
        
        if scale_action:
            await self._execute_scaling_action(
                policy, scale_action, current_instances, target_instances, metric_value
            )
    
    async def _execute_scaling_action(self, policy: ScalingPolicy, action: str,
                                    current_instances: int, target_instances: int,
                                    trigger_metric: float):
        """Execute a scaling action"""
        logging.info(
            f"Executing {action} for policy {policy.name}: "
            f"{current_instances} -> {target_instances} instances "
            f"(trigger: {policy.trigger.value}={trigger_metric})"
        )
        
        scaling_record = {
            'timestamp': datetime.utcnow(),
            'policy_name': policy.name,
            'action': action,
            'from_instances': current_instances,
            'to_instances': target_instances,
            'trigger_metric': trigger_metric,
            'trigger_type': policy.trigger.value
        }
        
        try:
            if action == 'scale_up':
                await self.resource_manager.scale_up(
                    policy.name, target_instances, scaling_record
                )
            else:
                await self.resource_manager.scale_down(
                    policy.name, target_instances, scaling_record
                )
            
            scaling_record['status'] = 'success'
            
        except Exception as e:
            logging.error(f"Scaling action failed: {e}")
            scaling_record['status'] = 'failed'
            scaling_record['error'] = str(e)
        
        self.scaling_history.append(scaling_record)
        
        # Keep only last 1000 scaling records
        if len(self.scaling_history) > 1000:
            self.scaling_history = self.scaling_history[-1000:]
    
    async def _handle_scheduled_event(self, event: EconomicEvent):
        """Handle predictive scaling for scheduled economic events"""
        time_to_event = (event.scheduled_time - datetime.utcnow()).total_seconds() / 60
        
        # Pre-scale before event
        if 0 < time_to_event <= event.pre_scale_minutes:
            scaling_factor = self._calculate_event_scaling_factor(event)
            
            for policy in self.scaling_policies:
                if policy.trigger == ScalingTrigger.SCHEDULED_EVENT:
                    current_instances = await self.resource_manager.get_current_instance_count(
                        policy.name
                    )
                    
                    target_instances = min(
                        int(current_instances * scaling_factor),
                        policy.max_instances
                    )
                    
                    if target_instances > current_instances:
                        await self._execute_scaling_action(
                            policy, 'scheduled_scale_up', 
                            current_instances, target_instances, scaling_factor
                        )
        
        # Post-event scale down
        elif time_to_event < -event.post_scale_minutes:
            for policy in self.scaling_policies:
                if policy.trigger == ScalingTrigger.SCHEDULED_EVENT:
                    current_instances = await self.resource_manager.get_current_instance_count(
                        policy.name
                    )
                    
                    # Scale back to normal levels
                    target_instances = max(
                        policy.min_instances,
                        int(current_instances * 0.7)  # Scale down to 70%
                    )
                    
                    if target_instances < current_instances:
                        await self._execute_scaling_action(
                            policy, 'scheduled_scale_down',
                            current_instances, target_instances, 0.7
                        )
    
    def _calculate_event_scaling_factor(self, event: EconomicEvent) -> float:
        """Calculate scaling factor based on event characteristics"""
        base_factors = {
            'low': 1.2,
            'medium': 1.5,
            'high': 2.0
        }
        
        base_factor = base_factors.get(event.processing_complexity, 1.2)
        
        # Adjust based on expected data volume
        volume_factor = 1.0 + (event.expected_data_volume / 1000000)  # Scale with millions of records
        
        return min(base_factor * volume_factor, 3.0)  # Cap at 3x scaling
    
    async def _cleanup_loop(self):
        """Cleanup completed scaling operations"""
        while True:
            try:
                # Remove completed scaling operations
                current_time = datetime.utcnow()
                expired_operations = []
                
                for op_id, operation in self.active_scalings.items():
                    if (current_time - operation['start_time']).minutes > 30:
                        expired_operations.append(op_id)
                
                for op_id in expired_operations:
                    del self.active_scalings[op_id]
                
                await asyncio.sleep(600)  # Clean up every 10 minutes
                
            except Exception as e:
                logging.error(f"Error in cleanup loop: {e}")
                await asyncio.sleep(600)

class EconomicCalendar:
    """Manages economic event calendar for predictive scaling"""
    
    def __init__(self):
        self.events = self._load_economic_events()
    
    def _load_economic_events(self) -> List[EconomicEvent]:
        """Load economic events from data source"""
        # In production, this would load from a real economic calendar API
        events = []
        
        # Sample recurring events
        base_date = datetime.utcnow().replace(hour=8, minute=30, second=0, microsecond=0)
        
        # Monthly employment report (first Friday of month)
        events.append(EconomicEvent(
            name="US Employment Report",
            scheduled_time=base_date + timedelta(days=7),
            expected_data_volume=500000,
            processing_complexity='high',
            pre_scale_minutes=30,
            post_scale_minutes=120
        ))
        
        # Weekly initial jobless claims (Thursday)
        events.append(EconomicEvent(
            name="Initial Jobless Claims",
            scheduled_time=base_date + timedelta(days=3),
            expected_data_volume=50000,
            processing_complexity='medium',
            pre_scale_minutes=15,
            post_scale_minutes=60
        ))
        
        # Federal Reserve announcements
        events.append(EconomicEvent(
            name="FOMC Decision",
            scheduled_time=base_date + timedelta(days=14, hours=6),
            expected_data_volume=100000,
            processing_complexity='high',
            pre_scale_minutes=60,
            post_scale_minutes=180
        ))
        
        return events
    
    def get_upcoming_events(self, hours_ahead: int = 24) -> List[EconomicEvent]:
        """Get economic events in the specified time window"""
        cutoff_time = datetime.utcnow() + timedelta(hours=hours_ahead)
        
        return [event for event in self.events 
                if datetime.utcnow() <= event.scheduled_time <= cutoff_time]

class MetricsCollector:
    """Collects metrics for scaling decisions"""
    
    async def collect_metrics(self) -> Dict[str, float]:
        """Collect current system metrics"""
        # In production, this would integrate with monitoring systems
        # like CloudWatch, Azure Monitor, or Stackdriver
        
        metrics = {
            'cpu_utilization': await self._get_cpu_utilization(),
            'memory_utilization': await self._get_memory_utilization(),
            'queue_length': await self._get_queue_length(),
            'data_ingestion_rate': await self._get_data_ingestion_rate(),
            'error_rate': await self._get_error_rate(),
            'response_time': await self._get_response_time()
        }
        
        return metrics
    
    async def _get_cpu_utilization(self) -> float:
        """Get average CPU utilization across instances"""
        # Mock implementation
        import random
        return random.uniform(20, 90)
    
    async def _get_memory_utilization(self) -> float:
        """Get average memory utilization"""
        import random
        return random.uniform(30, 85)
    
    async def _get_queue_length(self) -> float:
        """Get current processing queue length"""
        import random
        return random.uniform(0, 1000)
    
    async def _get_data_ingestion_rate(self) -> float:
        """Get current data ingestion rate (records/second)"""
        import random
        return random.uniform(100, 5000)
    
    async def _get_error_rate(self) -> float:
        """Get current error rate percentage"""
        import random
        return random.uniform(0, 5)
    
    async def _get_response_time(self) -> float:
        """Get average response time in milliseconds"""
        import random
        return random.uniform(50, 500)

class CloudResourceManager:
    """Manages cloud resources for scaling operations"""
    
    def __init__(self):
        self.resource_pools = {}
    
    async def get_current_instance_count(self, policy_name: str) -> int:
        """Get current number of instances for a policy"""
        # Mock implementation - in production would query cloud APIs
        return self.resource_pools.get(policy_name, 2)
    
    async def scale_up(self, policy_name: str, target_instances: int, 
                      scaling_record: Dict[str, Any]):
        """Scale up resources"""
        logging.info(f"Scaling up {policy_name} to {target_instances} instances")
        
        # Simulate scaling delay
        await asyncio.sleep(2)
        
        self.resource_pools[policy_name] = target_instances
        
        # In production, this would:
        # 1. Launch new instances/containers
        # 2. Configure load balancers
        # 3. Update service discovery
        # 4. Verify health checks
    
    async def scale_down(self, policy_name: str, target_instances: int,
                        scaling_record: Dict[str, Any]):
        """Scale down resources"""
        logging.info(f"Scaling down {policy_name} to {target_instances} instances")
        
        # Simulate graceful shutdown
        await asyncio.sleep(5)
        
        self.resource_pools[policy_name] = target_instances
        
        # In production, this would:
        # 1. Drain connections from instances
        # 2. Wait for processing to complete
        # 3. Terminate instances gracefully
        # 4. Update load balancers

Cost Optimization Strategies

Economic data systems often process massive amounts of historical data and require significant computational resources for analysis, making cost optimization crucial for sustainable operations. The cost optimization strategy must balance performance requirements with budget constraints while ensuring that critical economic analysis capabilities remain available when needed.

The strategy should leverage cloud-native cost optimization features like reserved instances for predictable workloads, spot instances for batch processing, and automatic scaling to avoid over-provisioning. However, economic systems have unique considerations - regulatory requirements might mandate certain security or compliance features that affect cost, and the time-sensitive nature of some economic analysis might require premium instance types during critical periods.

Long-term cost optimization requires understanding the total cost of ownership including data transfer costs, storage costs across different tiers, and the hidden costs of complexity in multi-cloud deployments. The optimization framework should provide visibility into cost attribution across different economic analysis workloads and enable decision-makers to understand the cost implications of their analytical requirements.

from typing import Dict, List, Any, Optional
from dataclasses import dataclass
from datetime import datetime, timedelta
from enum import Enum
import asyncio
import logging

class CostOptimizationStrategy(Enum):
    SPOT_INSTANCES = "spot_instances"
    RESERVED_INSTANCES = "reserved_instances"
    AUTO_SCALING = "auto_scaling"
    STORAGE_TIERING = "storage_tiering"
    DATA_LIFECYCLE = "data_lifecycle"
    WORKLOAD_SCHEDULING = "workload_scheduling"

@dataclass
class CostOptimizationRecommendation:
    strategy: CostOptimizationStrategy
    estimated_savings: float
    implementation_effort: str  # 'low', 'medium', 'high'
    risk_level: str  # 'low', 'medium', 'high'
    description: str
    implementation_steps: List[str]

class EconomicSystemCostOptimizer:
    """Cost optimization system for economic data platforms"""
    
    def __init__(self):
        self.cost_analyzer = CostAnalyzer()
        self.workload_profiler = WorkloadProfiler()
        self.optimization_engine = OptimizationEngine()
        self.cost_monitoring = CostMonitoring()
        
    async def analyze_and_optimize(self) -> Dict[str, Any]:
        """Perform comprehensive cost analysis and optimization"""
        
        # Collect cost data
        cost_data = await self.cost_analyzer.collect_cost_data()
        
        # Profile workloads
        workload_profiles = await self.workload_profiler.profile_workloads()
        
        # Generate optimization recommendations
        recommendations = await self.optimization_engine.generate_recommendations(
            cost_data, workload_profiles
        )
        
        # Implement approved optimizations
        implementation_results = await self._implement_optimizations(recommendations)
        
        return {
            'cost_analysis': cost_data,
            'workload_profiles': workload_profiles,
            'recommendations': recommendations,
            'implementation_results': implementation_results
        }
    
    async def _implement_optimizations(self, recommendations: List[CostOptimizationRecommendation]) -> List[Dict]:
        """Implement cost optimization recommendations"""
        results = []
        
        for recommendation in recommendations:
            if recommendation.risk_level == 'low' and recommendation.implementation_effort in ['low', 'medium']:
                try:
                    result = await self._execute_optimization(recommendation)
                    results.append(result)
                except Exception as e:
                    logging.error(f"Failed to implement optimization {recommendation.strategy}: {e}")
                    results.append({
                        'strategy': recommendation.strategy.value,
                        'status': 'failed',
                        'error': str(e)
                    })
        
        return results
    
    async def _execute_optimization(self, recommendation: CostOptimizationRecommendation) -> Dict[str, Any]:
        """Execute a specific optimization strategy"""
        
        if recommendation.strategy == CostOptimizationStrategy.SPOT_INSTANCES:
            return await self._implement_spot_instances(recommendation)
        elif recommendation.strategy == CostOptimizationStrategy.STORAGE_TIERING:
            return await self._implement_storage_tiering(recommendation)
        elif recommendation.strategy == CostOptimizationStrategy.WORKLOAD_SCHEDULING:
            return await self._implement_workload_scheduling(recommendation)
        elif recommendation.strategy == CostOptimizationStrategy.AUTO_SCALING:
            return await self._implement_auto_scaling_optimization(recommendation)
        else:
            return {'status': 'not_implemented', 'strategy': recommendation.strategy.value}
    
    async def _implement_spot_instances(self, recommendation: CostOptimizationRecommendation) -> Dict[str, Any]:
        """Implement spot instance optimization"""
        logging.info("Implementing spot instance optimization")
        
        # Identify suitable workloads for spot instances
        suitable_workloads = await self.workload_profiler.identify_spot_suitable_workloads()
        
        implementations = []
        total_savings = 0
        
        for workload in suitable_workloads:
            if workload['fault_tolerance'] == 'high' and workload['urgency'] == 'low':
                # Configure spot instance deployment
                spot_config = {
                    'max_spot_price': workload['current_cost_per_hour'] * 0.7,
                    'instance_types': workload['suitable_instance_types'],
                    'availability_zones': workload['availability_zones'],
                    'interruption_handling': 'checkpoint_and_restart'
                }
                
                # Estimate savings
                estimated_savings = workload['monthly_cost'] * 0.6  # 60% savings typical
                total_savings += estimated_savings
                
                implementations.append({
                    'workload_id': workload['id'],
                    'spot_config': spot_config,
                    'estimated_monthly_savings': estimated_savings
                })
        
        return {
            'strategy': 'spot_instances',
            'status': 'implemented',
            'workloads_migrated': len(implementations),
            'estimated_monthly_savings': total_savings,
            'implementations': implementations
        }
    
    async def _implement_storage_tiering(self, recommendation: CostOptimizationRecommendation) -> Dict[str, Any]:
        """Implement intelligent storage tiering"""
        logging.info("Implementing storage tiering optimization")
        
        # Analyze data access patterns
        access_patterns = await self.cost_analyzer.analyze_data_access_patterns()
        
        tiering_plan = []
        total_savings = 0
        
        for dataset in access_patterns:
            current_tier = dataset['current_storage_tier']
            optimal_tier = self._determine_optimal_storage_tier(dataset)
            
            if optimal_tier != current_tier:
                savings = self._calculate_storage_savings(dataset, current_tier, optimal_tier)
                
                tiering_plan.append({
                    'dataset_id': dataset['id'],
                    'current_tier': current_tier,
                    'optimal_tier': optimal_tier,
                    'size_gb': dataset['size_gb'],
                    'monthly_savings': savings
                })
                
                total_savings += savings
        
        # Execute tiering plan
        for plan_item in tiering_plan:
            await self._migrate_storage_tier(plan_item)
        
        return {
            'strategy': 'storage_tiering',
            'status': 'implemented',
            'datasets_migrated': len(tiering_plan),
            'estimated_monthly_savings': total_savings,
            'tiering_plan': tiering_plan
        }
    
    def _determine_optimal_storage_tier(self, dataset: Dict[str, Any]) -> str:
        """Determine optimal storage tier based on access patterns"""
        access_frequency = dataset['access_frequency_per_month']
        last_access = dataset['days_since_last_access']
        size_gb = dataset['size_gb']
        
        if access_frequency > 10 or last_access < 30:
            return 'hot'
        elif access_frequency > 1 or last_access < 90:
            return 'warm'
        elif last_access < 365:
            return 'cool'
        else:
            return 'archive'
    
    def _calculate_storage_savings(self, dataset: Dict[str, Any], 
                                 current_tier: str, optimal_tier: str) -> float:
        """Calculate storage cost savings from tier migration"""
        tier_costs = {
            'hot': 0.023,
            'warm': 0.0125,
            'cool': 0.01,
            'archive': 0.004
        }
        
        current_cost = dataset['size_gb'] * tier_costs[current_tier]
        optimal_cost = dataset['size_gb'] * tier_costs[optimal_tier]
        
        return max(0, current_cost - optimal_cost)
    
    async def _migrate_storage_tier(self, plan_item: Dict[str, Any]):
        """Execute storage tier migration"""
        logging.info(f"Migrating dataset {plan_item['dataset_id']} to {plan_item['optimal_tier']} tier")
        
        # In production, this would trigger actual storage migration
        await asyncio.sleep(1)  # Simulate migration time
    
    async def _implement_workload_scheduling(self, recommendation: CostOptimizationRecommendation) -> Dict[str, Any]:
        """Implement intelligent workload scheduling"""
        logging.info("Implementing workload scheduling optimization")
        
        # Analyze workload timing flexibility
        flexible_workloads = await self.workload_profiler.identify_time_flexible_workloads()
        
        # Create scheduling plan to use off-peak hours
        scheduling_plan = []
        total_savings = 0
        
        for workload in flexible_workloads:
            if workload['can_be_delayed']:
                off_peak_schedule = self._optimize_workload_schedule(workload)
                savings = self._calculate_scheduling_savings(workload, off_peak_schedule)
                
                scheduling_plan.append({
                    'workload_id': workload['id'],
                    'current_schedule': workload['current_schedule'],
                    'optimized_schedule': off_peak_schedule,
                    'estimated_monthly_savings': savings
                })
                
                total_savings += savings
        
        return {
            'strategy': 'workload_scheduling',
            'status': 'implemented',
            'workloads_rescheduled': len(scheduling_plan),
            'estimated_monthly_savings': total_savings,
            'scheduling_plan': scheduling_plan
        }
    
    def _optimize_workload_schedule(self, workload: Dict[str, Any]) -> Dict[str, Any]:
        """Optimize workload schedule for cost efficiency"""
        # Schedule compute-intensive workloads during off-peak hours
        return {
            'preferred_hours': [22, 23, 0, 1, 2, 3, 4, 5],  # 10 PM to 5 AM
            'max_delay_hours': workload.get('max_acceptable_delay', 6),
            'priority': workload.get('priority', 'low')
        }
    
    def _calculate_scheduling_savings(self, workload: Dict[str, Any], 
                                    schedule: Dict[str, Any]) -> float:
        """Calculate savings from off-peak scheduling"""
        # Off-peak hours typically have 20-30% cost reduction
        return workload['monthly_cost'] * 0.25
    
    async def _implement_auto_scaling_optimization(self, recommendation: CostOptimizationRecommendation) -> Dict[str, Any]:
        """Optimize auto-scaling policies"""
        logging.info("Implementing auto-scaling optimization")
        
        # Review current scaling policies
        current_policies = await self._get_current_scaling_policies()
        
        optimized_policies = []
        estimated_savings = 0
        
        for policy in current_policies:
            optimization = self._optimize_scaling_policy(policy)
            if optimization['savings'] > 0:
                optimized_policies.append(optimization)
                estimated_savings += optimization['savings']
        
        return {
            'strategy': 'auto_scaling',
            'status': 'implemented',
            'policies_optimized': len(optimized_policies),
            'estimated_monthly_savings': estimated_savings,
            'optimizations': optimized_policies
        }
    
    async def _get_current_scaling_policies(self) -> List[Dict[str, Any]]:
        """Get current auto-scaling policies"""
        # Mock implementation - in production would query cloud APIs
        return [
            {
                'policy_id': 'real-time-processors',
                'min_instances': 5,
                'max_instances': 50,
                'target_cpu': 70,
                'scale_up_cooldown': 300,
                'scale_down_cooldown': 300
            },
            {
                'policy_id': 'batch-processors',
                'min_instances': 2,
                'max_instances': 20,
                'target_cpu': 80,
                'scale_up_cooldown': 600,
                'scale_down_cooldown': 600
            }
        ]
    
    def _optimize_scaling_policy(self, policy: Dict[str, Any]) -> Dict[str, Any]:
        """Optimize individual scaling policy"""
        optimizations = []
        total_savings = 0
        
        # Optimize minimum instances based on usage patterns
        if policy['min_instances'] > 2:
            new_min = max(1, policy['min_instances'] - 1)
            savings = (policy['min_instances'] - new_min) * 100  # $100/instance/month
            
            optimizations.append({
                'parameter': 'min_instances',
                'old_value': policy['min_instances'],
                'new_value': new_min,
                'monthly_savings': savings
            })
            total_savings += savings
        
        # Optimize CPU targets to be more aggressive
        if policy['target_cpu'] < 75:
            new_target = min(85, policy['target_cpu'] + 10)
            savings = 50  # Estimated savings from higher utilization
            
            optimizations.append({
                'parameter': 'target_cpu',
                'old_value': policy['target_cpu'],
                'new_value': new_target,
                'monthly_savings': savings
            })
            total_savings += savings
        
        return {
            'policy_id': policy['policy_id'],
            'optimizations': optimizations,
            'savings': total_savings
        }

class CostAnalyzer:
    """Analyzes current costs and spending patterns"""
    
    async def collect_cost_data(self) -> Dict[str, Any]:
        """Collect comprehensive cost data"""
        return {
            'monthly_costs': await self._get_monthly_costs(),
            'cost_breakdown': await self._get_cost_breakdown(),
            'trending': await self._get_cost_trends(),
            'waste_analysis': await self._analyze_waste()
        }
    
    async def _get_monthly_costs(self) -> Dict[str, float]:
        """Get monthly costs by service category"""
        # Mock implementation - in production would query billing APIs
        return {
            'compute': 15000.0,
            'storage': 3000.0,
            'data_transfer': 800.0,
            'managed_services': 2200.0,
            'total': 21000.0
        }
    
    async def _get_cost_breakdown(self) -> Dict[str, Dict[str, float]]:
        """Get detailed cost breakdown"""
        return {
            'by_workload': {
                'real_time_processing': 8000.0,
                'batch_analytics': 6000.0,
                'data_storage': 3000.0,
                'monitoring': 1000.0,
                'other': 3000.0
            },
            'by_environment': {
                'production': 15000.0,
                'staging': 3000.0,
                'development': 3000.0
            }
        }
    
    async def _get_cost_trends(self) -> Dict[str, List[float]]:
        """Get cost trends over time"""
        return {
            'monthly_trend': [18000, 19500, 20200, 21000],  # Last 4 months
            'growth_rate': 0.05  # 5% monthly growth
        }
    
    async def _analyze_waste(self) -> Dict[str, Any]:
        """Analyze cost waste and inefficiencies"""
        return {
            'idle_resources': 2000.0,
            'oversized_instances': 1500.0,
            'unused_storage': 500.0,
            'total_waste': 4000.0,
            'waste_percentage': 19.0
        }
    
    async def analyze_data_access_patterns(self) -> List[Dict[str, Any]]:
        """Analyze data access patterns for storage optimization"""
        # Mock implementation
        return [
            {
                'id': 'historical_market_data',
                'size_gb': 5000,
                'current_storage_tier': 'hot',
                'access_frequency_per_month': 2,
                'days_since_last_access': 45
            },
            {
                'id': 'daily_economic_indicators',
                'size_gb': 500,
                'current_storage_tier': 'hot',
                'access_frequency_per_month': 30,
                'days_since_last_access': 1
            }
        ]

class WorkloadProfiler:
    """Profiles workloads to identify optimization opportunities"""
    
    async def profile_workloads(self) -> List[Dict[str, Any]]:
        """Profile all workloads for optimization analysis"""
        workloads = await self._discover_workloads()
        
        profiles = []
        for workload in workloads:
            profile = await self._analyze_workload(workload)
            profiles.append(profile)
        
        return profiles
    
    async def _discover_workloads(self) -> List[Dict[str, Any]]:
        """Discover all active workloads"""
        # Mock implementation
        return [
            {'id': 'real_time_market_feed', 'type': 'streaming'},
            {'id': 'daily_etl_batch', 'type': 'batch'},
            {'id': 'historical_analysis', 'type': 'analytical'},
            {'id': 'ml_model_training', 'type': 'ml_training'}
        ]
    
    async def _analyze_workload(self, workload: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze individual workload characteristics"""
        # Mock implementation
        return {
            'id': workload['id'],
            'type': workload['type'],
            'avg_cpu_utilization': 65,
            'avg_memory_utilization': 70,
            'fault_tolerance': 'medium',
            'urgency': 'medium',
            'monthly_cost': 2000,
            'suitable_instance_types': ['m5.large', 'm5.xlarge'],
            'can_be_delayed': workload['type'] in ['batch', 'analytical']
        }
    
    async def identify_spot_suitable_workloads(self) -> List[Dict[str, Any]]:
        """Identify workloads suitable for spot instances"""
        workloads = await self.profile_workloads()
        
        return [w for w in workloads if 
                w['fault_tolerance'] in ['medium', 'high'] and 
                w['can_be_delayed']]
    
    async def identify_time_flexible_workloads(self) -> List[Dict[str, Any]]:
        """Identify workloads with scheduling flexibility"""
        workloads = await self.profile_workloads()
        
        return [w for w in workloads if w['can_be_delayed']]

class OptimizationEngine:
    """Generates cost optimization recommendations"""
    
    async def generate_recommendations(self, cost_data: Dict[str, Any], 
                                     workload_profiles: List[Dict[str, Any]]) -> List[CostOptimizationRecommendation]:
        """Generate comprehensive optimization recommendations"""
        recommendations = []
        
        # Spot instance recommendations
        spot_savings = self._estimate_spot_savings(workload_profiles)
        if spot_savings > 100:  # Worth implementing if savings > $100/month
            recommendations.append(CostOptimizationRecommendation(
                strategy=CostOptimizationStrategy.SPOT_INSTANCES,
                estimated_savings=spot_savings,
                implementation_effort='medium',
                risk_level='medium',
                description=f"Migrate suitable batch workloads to spot instances for estimated ${spot_savings:.0f}/month savings",
                implementation_steps=[
                    "Identify fault-tolerant workloads",
                    "Implement checkpoint/restart mechanisms",
                    "Configure spot instance policies",
                    "Test failover scenarios",
                    "Gradually migrate workloads"
                ]
            ))
        
        # Storage tiering recommendations
        storage_waste = cost_data['waste_analysis']['unused_storage']
        if storage_waste > 200:
            recommendations.append(CostOptimizationRecommendation(
                strategy=CostOptimizationStrategy.STORAGE_TIERING,
                estimated_savings=storage_waste * 0.8,
                implementation_effort='low',
                risk_level='low',
                description=f"Implement intelligent storage tiering for ${storage_waste * 0.8:.0f}/month savings",
                implementation_steps=[
                    "Analyze data access patterns",
                    "Define tiering policies",
                    "Implement automated migration",
                    "Monitor access performance"
                ]
            ))
        
        # Auto-scaling optimization
        idle_resources = cost_data['waste_analysis']['idle_resources']
        if idle_resources > 500:
            recommendations.append(CostOptimizationRecommendation(
                strategy=CostOptimizationStrategy.AUTO_SCALING,
                estimated_savings=idle_resources * 0.6,
                implementation_effort='medium',
                risk_level='low',
                description=f"Optimize auto-scaling policies for ${idle_resources * 0.6:.0f}/month savings",
                implementation_steps=[
                    "Review current scaling policies",
                    "Analyze historical usage patterns",
                    "Adjust scaling thresholds",
                    "Implement predictive scaling",
                    "Monitor performance impact"
                ]
            ))
        
        return recommendations
    
    def _estimate_spot_savings(self, workload_profiles: List[Dict[str, Any]]) -> float:
        """Estimate potential savings from spot instances"""
        total_savings = 0
        
        for workload in workload_profiles:
            if (workload['fault_tolerance'] in ['medium', 'high'] and 
                workload['can_be_delayed']):
                # Spot instances typically save 60-70%
                total_savings += workload['monthly_cost'] * 0.65
        
        return total_savings

# Usage example
async def main():
    optimizer = EconomicSystemCostOptimizer()
    results = await optimizer.analyze_and_optimize()
    
    print("Cost Optimization Results:")
    print(f"Current monthly cost: ${results['cost_analysis']['monthly_costs']['total']:,.0f}")
    print(f"Identified waste: ${results['cost_analysis']['waste_analysis']['total_waste']:,.0f}")
    print(f"Number of recommendations: {len(results['recommendations'])}")
    
    total_potential_savings = sum(r.estimated_savings for r in results['recommendations'])
    print(f"Total potential monthly savings: ${total_potential_savings:,.0f}")

if __name__ == "__main__":
    asyncio.run(main())

Successfully deploying and scaling economic data systems in cloud environments requires a comprehensive approach that addresses the unique characteristics of economic data processing. The multi-cloud architecture patterns, auto-scaling strategies, and cost optimization techniques covered in this guide provide the foundation for building resilient, scalable, and cost-effective economic data platforms.

The key to success lies in understanding that economic data systems have predictable patterns that can be leveraged for optimization - from scheduled data releases that enable predictive scaling to batch processing workloads that are ideal for spot instances. By implementing these patterns and continuously monitoring and optimizing the deployment, organizations can build economic data systems that scale efficiently while maintaining cost control.

For comprehensive cloud deployment of economic data systems, explore these complementary resources:

Recent Articles